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ABSTRACT. By “physical probability” I mean the empirical concept of probability in or-
dinary language. It can be represented as a function of an experiment type and an outcome
type, which explains how non-extreme physical probabilities are compatible with determin-
ism. Two principles, called specification and independence, put restrictions on the existence
of physical probabilities, while a principle of direct inference connects physical probability
with inductive probability. This account avoids a variety of weaknesses in the theories of

Levi and Lewis.

1 My account

I will present my account of physical probability in this section and then I will
compare it with the theories of Levi and Lewis in Sections [2| and

1.1 Identification of the concept

Suppose a coin is about to be tossed and you are told that it either has
heads on both sides or else has tails on both sides; if I ask you to state
the probability that the coin will land heads, there are two natural answers:
(i) 1/2; (ii) either 0 or 1 but I don’t know which. Although these answers
are incompatible, there is a sense in which each is right, so “probability” is
ambiguous in ordinary language. I call the sense of “probability” in which (i)
is right inductive probability and I call the sense in which (ii) is right physical
probability.

I say that a probability concept is empirical if some elementary statements
for it are synthetic. Physical probability is empirical; for example, the physical
probability of a coin landing heads depends on contingent facts about the coin.
On the other hand, inductive probability isn’t empirical, as I have argued
elsewhere (Maher|2006). Therefore, physical probability can be defined as the
empirical concept of probability in ordinary language.

1.2 Form of statements

By an “experiment” I mean an action or event such as tossing a coin, weighing
an object, or two particles colliding. I distinguish between experiment tokens
and experiment types; experiment tokens have a space-time location whereas



experiment types are abstract objects and so lack such a location. For example,
a particular toss of a coin at a particular place and time is a token of the
experiment type “tossing a coin”; the token has a space-time location but the
type does not.

Experiments have outcomes and here again there is a distinction between
tokens and types. For example, a particular event of a coin landing heads that
occurs at a particular place and time is a token of the outcome type “landing
heads”; only the token has a space-time location.

Now consider a typical statement of physical probability such as:

The physical probability of heads on a toss of this coin is 1/2.

Here the physical probability appears to relate three things: tossing this coin
(an experiment type), the coin landing heads (an outcome type), and 1/2 (a
number). This suggests that elementary statements of physical probability can
be represented as having the form “The physical probability of X resulting
in O is r,” where X is an experiment type, O is an outcome type, and r is a
number. I claim that this suggestion is correct.

I will use the notation “ppx(0O) = r” as an abbreviation for “the physical
probability of experiment type X having outcome type O is r.”

1.3 Unrepeatable experiments

The types that I have mentioned so far can all have more than one token; for
example, there can be many tokens of the type “tossing this coin.” However,
there are also types that cannot have more than one token; for example, there
can be at most one token of the type “tossing this coin at noon today.” What
distinguishes types from tokens is not repeatability but rather abstractness,
evidenced by the lack of a space-time location. Although a token of “tossing
this coin at noon today” must have a space-time location, the type does not
have such a location, as we can see from the fact that the type exists even if
there is no token of it. It is also worth noting that in this example the type
does not specify a spatial location.

This observation allows me to accommodate ordinary language statements
that appear to attribute physical probabilities to token events. For example, if
we know that a certain coin will be tossed at noon today, we might ordinarily
say that the physical probability of getting heads on that toss is 1/2, and this
may seem to attribute a physical probability to a token event; however, the
statement can be represented in the form ppx(O) = r by taking X to be the
unrepeatable experiment type “tossing this coin at noon today.” Similarly in
other cases.

1.4 Compatibility with determinism

From the way the concept of physical probability is used, it is evident that
physical probabilities can take non-extreme values even when the events in



question are governed by deterministic laws. For example, people attribute
non-extreme physical probabilities in games of chance, while believing that the
outcome of such games is causally determined by the initial conditions. Also,
scientific theories in statistical mechanics, genetics, and the social sciences
postulate non-extreme physical probabilities in situations that are believed
to be governed by underlying deterministic laws. Some of the most impor-
tant statistical scientific theories were developed in the nineteenth century by
scientists who believed that all events are governed by deterministic laws.

The recognition that physical probabilities relate experiment and outcome
types enables us to see how physical probabilities can have non-extreme val-
ues in deterministic contexts. Determinism implies that, if X is sufficiently
specific, then ppx(O) = 0 or 1; but X need not be this specific, in which case
ppx (O) can have a non-extreme value even if the outcome of X is governed
by deterministic laws. For example, a token coin toss belongs to both the
following types:

X: Toss of this coin.

X': Toss of this coin from such and such a position, with such and such force
applied at a such and such a point, etc.

Assuming that the outcome of tossing a coin is governed by deterministic laws,
ppx’(head) = 0 or 1; however, this is compatible with ppx (head) = 1/2.

1.5 Specification
I claim that physical probabilities satisfy the following:

Specification Principle (SP). If it is possible to perform X in a way that
ensures it 1s also a performance of the more specific experiment type X', then
ppx (O) exists only if ppx/(O) exists and is equal to ppx(O).

For example, let X be tossing a normal coin, let X’ be tossing a normal coin
on a Monday, and let O be that the coin lands heads. It is possible to perform
X in a way that ensures it is a performance of X’ (just toss the coin on a
Monday), and ppx (O) exists, so SP implies that ppx/(O) exists and equals
ppx (0), which is correct.

It is easy to see that SP implies the following; nevertheless, all theorems
are proved in Section

Theorem 1. If it is possible to perform X in a way that ensures it is also
a performance of the more specific experiment type X;, for i = 1,2, and if
ppx, (O) # ppx,(0), then ppx(O) does not exist.

For example, let B be an urn that contains only black balls, W an urn that



contains only white balls, and let:

X = selecting a ball from either B or W
Xp = selecting a ball from B
Xw = selecting a ball from W

O = the ball selected is white.

It is possible to perform X in a way that ensures it is also a performance of
the more specific experiment type Xp, likewise for Xy, and ppx,(0) = 0
while ppx,, (O) = 1, so Theorem [1| implies that ppx (O) does not exist, which
is correct.

Let us now return to the case where X is tossing a normal coin and O is
that the coin lands heads. If this description of X was a complete specification
of the experiment type, then X could be performed with apparatus that would
precisely fix the initial position of the coin and the force applied to it, thus
determining the outcome. It would then follow from SP that ppx (O) does not
exist. I think this consequence of SP is clearly correct; if we allow this kind
of apparatus, there is not a physical probability of a toss landing heads. So
when we say—as I have said—that ppx (O) does exist, we are tacitly assuming
that the toss is made by a normal human without special apparatus that could
precisely fix the initial conditions of the toss; a fully explicit specification of X
would include this requirement. The existence of ppx (O) thus depends on an
empirical fact about humans, namely, the limited precision of their perception
and motor control.

1.6 Independence
(

Let X™ be the experiment of performing X n times and let Oik) be the outcome
of X™ which consists in getting O; on the kth performance of X. I claim that
physical probabilities satisfy the following;:

Independence Principle (IN). If ppx(0;) exists for i = 1,...,n then

ppxn (Ogl) - O,(ln)) exists and equals ppx (O1) ...ppx(Oy).

For example, let X be shuffling a normal deck of 52 cards and then drawing
two cards without replacement; let O be the outcome of getting two aces. Here
ppx (0) = (4/52)(3/51) = 1/221. Applying IN with n =2 and O; = Oy = O,
it follows that:
ppx2(0MOP) = [ppx (0)]* = 1/221°.

This implication is correct because X specifies that it starts with shuffling a
normal deck of 52 cards, so to perform X a second time one must replace the
cards drawn on the first performance and reshuffle the deck, and hence the
outcome of the first performance of X has no effect on the outcome of the
second performance.

For a different example, suppose X is defined merely as drawing a card
from a deck of cards, leaving it open what cards are in the deck, and let O



be drawing an ace. By fixing the composition of the deck in different ways, it
is possible to perform X in ways that ensure it is also a performance of more
specific experiment types that have different physical probabilities; therefore,
by Theorem[I] ppx (O) does not exist. Here the antecedent of IN is not satisfied
and hence IN is not violated.

The following theorem elucidates IN by decomposing its consequent into
two parts.

Theorem 2. IN is logically equivalent to: if ppx(O;) exists fori =1,...,n
then both the following hold.

(a) prn(Ogl) e 072")) exists and equals ppxn (Ogl)) o ppxn (O

(b) prn(OZ(i)) exists and equals ppx (O;), fori=1,...,n.

Here (a) says outcomes are probabilistically independent in ppxn» and (b)
asserts a relation between ppx» and ppx.

1.7 Direct inference

I will now discuss how physical probability is related to inductive probability.
The arguments of inductive probability are two propositions or sentences and
I will write “ip(A|B)” for the inductive probability of proposition A given
proposition B.

Let an R-proposition be a consistent conjunction of propositions, each of
which is either of the form “ppx(O) = r” or else of the form “it is possible to
perform X in a way that ensures it is also a performance of X’'.” Let “Xa”
and “Oa” mean that a is a token of experiment type X and outcome type O,
respectively. In what follows, “R” always denotes an R-proposition while “a”
denotes a token event. Inductive probabilities satisfy the following:

Direct Inference Principle (DI). If R implies that ppx(O) = r then
ip(Oa|Xa.R) =r.

For example, let X be tossing this coin, let X’ be tossing it from such and
such a position, with such and such a force, etc., let O be that the coin
lands heads, and let R be “ppx(0) = 1/2 and ppx/(O) = 1.” Then DI
implies ip(Oa|Xa.R) = 1/2 and ip(Oa|X'a.R) = 1. Since Xa.X'a is logically
equivalent to X'a, it follows that ip(Oa|Xa.X'a.R) = 1.

As it stands, DI has no practical applications because we always have
more evidence than just Xa and an R-proposition. However, in many cases
our extra evidence does not affect the application of DI; I will call evidence of
this sort “admissible.” More formally:

Definition. If R implies that ppx(O) = r then E is admissible with respect
to (X,0,R,a) iff ip(Oa|Xa.R.E) =r.

The principles I have stated imply that certain kinds of evidence are admissi-
ble. One such implication is:



Theorem 3. E is admissible with respect to (X, 0, R, a) if both the following
are true:

(a) R implies it is possible to perform X in a way that ensures it is also a
performance of X', where X'a is logically equivalent to Xa.E.

(b) There exists an r such that R implies ppx(O) = r.

For example, let X be tossing this coin and O that the coin lands heads. Let
E Dbe that a was performed by a person wearing a blue shirt. If R states a
value for ppx (O) and that it is possible to perform X in a way that ensures the
tosser is wearing a blue shirt, then E is admissible with respect to (X, O, R, a).
In this example, the X’ in Theorem [3|is tossing the coin while wearing a blue
shirt.

We also have:

Theorem 4. E is admissible with respect to (X, 0, R, a) if both the following
are true:

(a) E = Xby...Xb,.01b1 ...Onby, where by, ..., b, are distinct from each
other and from a, and m <n.

(b) For some r, and some r; > 0, R implies that ppx (0O) = r and ppx (0;) =
Ti, i:1,...,m.

For example, let X be tossing a coin and O that the coin lands heads. Let a
be a particular toss of the coin and let E state some other occasions on which
the coin has been (or will be) tossed and the outcome of some or all of those
tosses. If R states a non-extreme value for ppx(O), then F is admissible with
respect to (X, O, R, a). In this example, the O; in Theorem 4] are all either O
or ~0.

Theorems [3] and [4] could be combined to give a stronger result but I will
not pursue that here.

2 Comparison with Levi

I will now compare the account of physical probability that I have just given
with the theory of chance presented by Levi| (1980} [1990).

2.1 Identification of the concept

Levi does not give an explicit account of what he means by “chance” but there
are some reasons to think he means physical probability. For example, he says:

The nineteenth century witnessed the increased use of notions of
objective statistical probability or chance in explanation and pre-
diction in statistical mechanics, genetics, medicine, and the social
sciences. (1990, 120)



This shows that Levi regards “chance” as another word for “objective statisti-
cal probability,” which suggests its meaning is a sense of the word “probabil-
ity.” Also, the nineteenth century scientific work that Levi here refers to used
the word “probability” in a pre-existing empirical sense and thus was using
the concept of physical probability.

However, there are also reasons to think that what Levi means by “chance”
is not physical probability. For example:

e Levi| (1990, 117, 120) speaks of plural “conceptions” or “notions” of
chance, whereas there is only one concept of physical probability.

e Levi| (1990, 142) criticizes theories that say chance is incompatible with
determinism by saying “the cost is substantial and the benefit at best
negligible.” This criticism, in terms of costs and benefits, would be ap-
propriate if “chance” meant a newly proposed concept but it is irrelevant
if “chance” means the pre-existing ordinary language concept of physical
probability. If “chance” means physical probability then the appropriate
criticism is simply that linguistic usage shows that physical probability
is compatible with determinism—as I argued in Section 1.4

So, it is not clear that what Levi means by “chance” is physical probability.
Nevertheless, I think it worthwhile to compare my account of physical proba-
bility with the account that is obtained by interpreting Levi’s “chance” as if
it meant physical probability. I will do that in the remainder of this section.

2.2 Form of statements
Levi (1990, 120) says:

Authors like [Venn (1866]) and |Cournot| (1851) insisted that their
construals of chance were indeed consistent with respect to un-
derlying determinism ... The key idea lurking behind Venn’s ap-
proach is that the chance of an event occurring to some object or
system—a “chance set up,” according to [Hacking| (1965), and an
“object,” according to [Venn| (1866, ch. 3)—is relative to the kind
of trial or experiment (or “agency,” according to Venn) conducted
on the system.

Levi endorses this “key idea.” The position I defended in Section is similar
in making physical probability relative to a type of experiment, but there is
a difference. I represented statements of physical probability as relating three
things: An experiment type (e.g., a human tossing a certain coin), an outcome
type (e.g., the coin landing heads), and a number (e.g., 1/2). On Levi’s
account, chance relates four things: A chance set up (e.g., a particular coin),
a type of trial or experiment (e.g., tossing by a human), an outcome type, and
a number. Thus what I call an “experiment” combines Levi’s “chance set up”
and his “trial or experiment.”



An experiment (in my sense) can often be decomposed into a trial on a
chance set up in more than one way. For example, if the experiment is weighing
a particular object on a particular scale, we may say:

e The set up is the scale and the trial is putting the object on it.
e The set up is the object and the trial is putting it on the scale.

e The set up is the object and scale together and the trial is putting the
former on the latter.

These different analyses make no difference to the physical probability. There-
fore, Levi’s representation of physical probability statements, while perhaps
adequate for representing all such statements, is more complex than it needs
to be.

2.3 Specification

Since SP is a new principle, Levi was not aware of it. I will now point out two
ways in which his theory suffers from this.

2.3.1 A mistaken example

To illustrate how chance is relative to the type of experiment, |Levi (1990, 120)
made the following assertion:

The chance of coin a landing heads on a toss may be 0.5, but the
chance of the coin landing heads on a toss by Morgenbesser may,
at the same time, be 0.9.

But let X be tossing a (by a human), let X’ be tossing a by Morgenbesser, and
let O be that a lands heads. It is possible to perform X in a way that ensures
it is also a performance of X’ (just have Morgenbesser toss the coin), so SP
implies that if ppx (O) = 0.5 then ppx/(O) must have the same value. Levi, on
the other hand, asserts that it could be that ppx (O) = 0.5 and ppx/(O) = 0.9.

Intuition supports SP here. If the physical probability of heads on a toss
of a coin were different depending on who tosses the coin (as Levi supposes)
then, intuitively, there would not be a physical probability for getting heads on
a toss by an unspecified human, just as there is not a physical probability for
getting a black ball on drawing a ball from an urn of unspecified composition.
Thus, Levi’s example is mistaken.

2.3.2 An inadequate explanation

Levi (1980, 264) wrote:

Suppose box a has two compartments. The left compartment
contains 40 black balls and 60 white balls and the right compart-
ment contains 40 red balls and 60 blue balls. A trial of kind S is



selecting a ball at random from the left compartment and a trial
of kind S’ is selecting a ball at random from the right compart-
ment ... Chances are defined for both kinds of trials over their
respective sample spaces [i.e., outcome types].

Consider trials of kind S V S’. There is indeed a sample space
consisting of drawing a red ball, a blue ball, a black ball, and
a white ball. However, there is no chance distribution over the
sample space.

To see why no chance distribution is defined, consider that the
sample space for trials of kind SV S’ is such that a result consisting
of obtaining a [black]| or a [white| ball is equivalent to obtaining a
result of conducting a trial of kind S ... Thus, conducting a trial
of kind SV S’ would be conducting a trial of kind S with some
definite chance or statistical probability.

There is no a priori consideration precluding such chances; but
there is no guarantee that such chances are defined either. In the
example under consideration, we would normally deny that they
are.

Let O be that the drawn ball is either black or white. I agree with Levi that
ppsvs (O) doesn’t exist. However, Levi’s explanation of this is very shallow;
it rests on the assertion that ppgys/(S) doesn’t exist, for which Levi has no
explanation. It also depends on there not being balls of the same color in both
compartments, though the phenomenon is not restricted to that special case;
if we replaced the red balls by black ones, Levi’s explanation would fail but
ppsvs (0O) would still not exist.

SP provides the deeper explanation that Levi lacks. The explanation is
that it is possible to perform SV S’ in a way that ensures S is performed,
likewise for S, and pps(O) # ppg(O), so by Theorem (1, ppsyvs (O) does not
exist. In Levi’s example, pps(O) = 1 and ppg/(O) = 0; if the example is varied
by replacing the red balls with black ones then ppg/(O) = 0.4; the explanation
of the non-existence of ppgys/(O) is the same in both cases.

2.4 Independence

Levi considers a postulate equivalent to IN and argues that it doesn’t hold in
general. Here is his argument:

[A person] might believe that coin a is not very durable so that
each toss alters the chance of heads on the next toss and that
how it alters the chance is a function of the result of the previous
tosses. [The person| might believe that coin a, which has never
been tossed, has a .5 chance of landing heads on a toss as long as
it remains untossed. Yet, he might not believe that the chance of
r heads on n tosses is () (.5)". (1980, 272)



The latter formula follows from IN and ppx (heads) = 0.5.

Levi here seems to be saying that the chance of experiment type X giving
outcome type O can be different for different tokens of X. He explicitly asserts
that elsewhere:

Sometimes kinds of trials are not repeatable on the same object or
system ... And even when a trial of some kind can be repeated,
the chances of response may change from trial to trial. (1990, 128)

But that is inconsistent with Levi’s own view, according to which chance is a
function of the experiment and outcome types.

In fact, IN is not violated by Levi’s example of the non-durable coin, as
the following analysis shows.

e We may take X to be starting with the coin symmetric and tossing it n
times. Here repetition of X requires starting with the coin again sym-
metric, so different performances of X are independent, as IN requires.
This is similar to the example of drawing cards without replacement that
I gave in Section [I.6

e We may take X to be tossing the coin once when it is in such-and-such
a state. Here repetition of X requires first restoring the coin to the
specified state, so again different performances of X are independent.

e Levi seems to be taking X to be tossing the coin once, without specifying
the state that the coin is in. In that case, ppx (heads) does not exist, so
again there is no violation of IN.

I conclude that Levi’s objection to IN is fallacious.

2.5 Direct inference

Levi endorses a version of the direct inference principle; the following is an
example of its application:

If Jones knows that coin a is fair (i.e., has a chance of 0.5 of landing
heads and also of landing tails) and that a is tossed at time t,
what degree of belief or credal probability ought he to assign to
the hypothesis that the coin lands heads at that time? Everything
else being equal, the answer seems to be 0.5. (Levi (1990, 118).

As this indicates, Levi’s direct inference principle concerns the degree of belief
that a person ought to have. By contrast, the principle DI in Section [1.7]
concerns inductive probability.

To understand Levi’s version of the principle we need to know what it
means to say that a person “ought” to have a certain degree of belief. Levi
doesn’t give any adequate account of this, so I am forced to make conjectures
about what it means.

10



One might think that a person “ought” to have a particular degree of
belief iff the person would be well advised to adopt that degree of belief. But
if that is what it means, then Levi’s direct inference principle is false. For
example, Jones might know that coin a is to be tossed 100 times, and that
the tosses are independent, in which case Levi’s direct inference principle says
that for each r from 0 to 100, Jones’s degree of belief that the coin will land
heads exactly r times ought to be (120) (0.5)1%0, However, it would be difficult
(if not impossible) to get one’s degrees of belief in these 101 propositions to
have precisely these values and, unless something very important depends on
it, there are better things to do with one’s time. Therefore, it is not always
advisable to have the degrees of belief that, according to Levi’s direct inference
principle, one “ought” to have.

Alternatively, one might suggest that a person “ought” to have a particular
degree of belief iff it is the only one that is justified by the person’s evidence.
But what does it mean for a person’s degree of belief to be justified by the
person’s evidence? According to the deontological conception of justification,
which Alston, (1985| 60) said is used by most epistemologists, it means that the
person is not blameworthy in having this degree of belief. On that account,
the suggestion would be that a person “ought” to have a particular degree of
belief iff the person would deserve blame for not having it. However, there
need not be anything blameworthy about failing to have all the precise degrees
of beliefs in the example in the preceding paragraph; so on this interpretation,
Levi’s direct inference principle is again false.

For a third alternative, we might say that a person “ought” to have a
particular degree of belief in a particular proposition iff this degree of belief
equals the inductive probability of the proposition given the person’s evidence.
On this interpretation, Levi’s direct inference principle really states a relation
between inductive probability and physical probability, just as DI does; the
reference to a person’s degree of belief is a misleading distraction that does no
work and would be better eliminated.

So, my criticism of Levi’s version of the direct inference principle is that
it is stated in terms of the unclear concept of what a person’s degree of belief
“ought” to be, that on some natural interpretations the principle is false, and
the interpretation that makes it true is one in which the reference to degree
of belief is unnecessary and misleading. These defects are all avoided by DI.

2.6 Admissible evidence

As I noted in Section DI by itself has no practical applications because
we always have more evidence than just the experiment type and an R-
proposition. For example, Jones, who is concerned with the outcome of a
particular toss of coin a, would know not only that coin a is fair but also a
great variety of other facts. It is therefore important to have an account of
when additional evidence is admissible.

Levi’s (1980, 252) response is that evidence is admissible if it is known to
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be “stochastically irrelevant,” i.e., it is known that the truth or falsity of the
evidence does not alter the physical probability. That is right, but to provide
any substantive information it needs to be supplemented by some principles
about what sorts of evidence are stochastically irrelevant; Levi provides no
such principles.

By contrast, Theorems [3] and [4] provide substantive information about
when evidence is admissible. Those theorems were derived from SP and IN,
neither of which is accepted by Levi, so it is not surprising that he has nothing
substantive to say about when evidence is admissible.

3 Comparison with Lewis

I will now discuss the theory of chance proposed by Lewis (1980, |[1986)). A re-
lated theory was proposed earlier by Mellor| (1971)), and other writers have sub-
sequently expressed essentially the same views (Loewer| 2004; |Schaffer|[2007)),
but I will focus on Lewis’s version. The interested reader will be able to apply
what I say here to those other theories.

3.1 Lewis’s theory

According to |Lewis| (1986, 96-97), chance is a function of three arguments: a
proposition, a time, and a (possible) world. He writes Py, (A) for the chance
at time t and world w of A being true.

Lewis (1986, 95-97) says that the complete theory of chance for world w is
the set of all conditionals that hold at w and are such that (1) the antecedent
is a proposition about history up to a certain time, (2) the consequent is a
proposition about chance at that time, and (3) the conditional is a “strong
conditional” of some sort, such as the counterfactual conditional of [Lewis
(1973). He uses the notation Ty, for the complete theory of chance for w. He
also uses Hy, for the complete history of w up to time t. Lewis| (1986, 97)
argues that the conjunction Hy,T,, implies all truths about chances at ¢ and
w.

Lewis’s version of the direct inference principle, which he calls the Principal
Principle, is:

Let C' be any reasonable initial credence function. Then for any
time ¢, world w, and proposition A in the domain of Py, P, (A) =
C(A|Hy,Ty). (1986, 97)

Lewis| (1986 127) argues that if Hy, and the laws of w together imply A,
then Hy, T, implies P, (A) = 1. It follows that if w is deterministic then Py,
cannot have any values other than 0 or 1. For example, in a deterministic
world, the chance of any particular coin toss landing heads must be 0 or 1.
Lewis accepts this consequence.

12



If a determinist says that a tossed coin is fair, and has an equal
chance of falling heads or tails, he does not mean what I mean
when he speaks of chance. (1986, 120)

Nevertheless, prodded by [Levi| (1983)), Lewis proposed an account of what a
determinist does mean when he says this; he called it “counterfeit” chance. I
will now explain this concept.

For any time ¢, the propositions Hz,,Ty,, for all worlds w, form a partition
that Lewis (1986, 99) calls the history-theory partition for time ¢t. Another way
of expressing the Principal Principle is to say that the chance distribution at
any time ¢t and world w is obtained by conditioning any reasonable initial
credence function on the element of the history-theory partition for ¢ that
holds at w. [Lewis (1986, 120-121) claimed that the history-theory partition
has the following qualities:

(1) It seems to be a natural partition, not gerrymandered. It is
what we get by dividing possibilities as finely as possible in
certain straightforward respects.

(2) It is to some extent feasible to investigate (before the time in
question) which cell of this partition is the true cell; but

(3) it is unfeasible (before the time in question, and without pe-
culiarities of time whereby we could get news from the future)
to investigate the truth of propositions that divide the cells.

With this background, Lewis states his account of counterfeit chance:

Any coarser partition, if it satisfies conditions (1)—(3) according to
some appropriate standards of feasible investigation and of natural
partitioning, gives us a kind of counterfeit chance suitable for use
by determinists: namely, reasonable credence conditional on the
true cell of that partition. Counterfeit chances will be relative
to partitions; and relative, therefore, to standards of feasibility
and naturalness; and therefore indeterminate unless the standards
are somehow settled, or at least settled well enough that all the
remaining candidates for the partition will yield the same answers.
(1986, 121)

So we can say that for Lewis, physical probability (the empirical concept of
probability in ordinary language) is reasonable initial credence conditioned on
the appropriate element of a suitable partition. It may be chance or counterfeit
chance, depending on whether the partition is the history-theory partition or
something coarser. I will now criticize this theory of physical probability.

3.2 Form of statements

Lewis says that chance is a function of three arguments: a proposition, a time,
and a world. He does not explicitly say what the arguments of counterfeit
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chance are but, since he thinks this differs from chance only in the partition
used, he must think that counterfeit chance is a function of the same three
arguments, and hence (to put it in my terms) that physical probability is a
function of these three arguments.

Let us test this on an example. Consider again the following typical state-
ment of physical probability:

H: The physical probability of heads on a toss of this coin is 1/2.

Lewis| (1986, 84) himself uses an example like this. However, H doesn’t at-
tribute physical probability to a proposition or refer to either a time or a
possible world. So, this typical statement of physical probability does not
mention any of the things that Lewis says are the arguments of physical prob-
ability.

Of course, it may nevertheless be that the statement could be analyzed in
Lewis’s terms. Lewis did not indicate how to do that, although he did say
that when a time is not mentioned, the intended time is likely to be the time
when the event in question begins (1986, 91). So we might try representing
H as:

H’: For all s and t, if s is a token toss of this coin and ¢ is a time just prior to
s then the physical probability at ¢ in the actual world of the proposition
that s lands heads is 1/2.

But there are many things wrong with this. First, “s lands heads” is not a
proposition, since s is here a variable. Second, H' is trivially true if the coin
is never tossed, though H would still be false if the coin is biased, so they
are not equivalent. Third, the physical probability of a coin landing heads
is different depending on whether we are talking about tossing by a human,
with no further specification (in which case H is probably true), or about
tossing with such and such a force from such and such a position, etc. (in
which case H is false), but H' doesn’t take account of this. And even if these
and other problems could be fixed somehow (which has not been done), the
resulting analysis must be complex and its correctness doubtful. By contrast,
my account is simple and follows closely the grammar of the original statement;
I represent H as saying that the physical probability of the experiment type
“tossing this coin” having the outcome type “heads” is 1/2.

I will add that, regardless of what we take the other arguments of physical
probability to be, there is no good reason to add a possible world as a further
argument. Of course, the value of a physical probability depends on empirical
facts that are different in different possible worlds, but this does not imply
that physical probability has a possible world as an argument. The simpler
and more natural interpretation is that physical probability is an empirical
concept, not a logical one; that is, even when all the arguments of physical
probability have been specified, the value is in general a contingent matter.

Lewis himself sometimes talks of physical probability in the way I am
here advocating. For instance, he said that counterfeit chance is “reasonable
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credence conditional on the true cell of [a] partition” (emphasis added); to be
consistent with his official view, he should have said that counterfeit chance
at w is reasonable credence conditional on the cell of the partition that holds
at w. My point is that the former is the simpler and more natural way to
represent physical probability.

So, Lewis made a poor start when he took the arguments of physical prob-
ability to be a proposition, a time, and a world. That representation has not
been shown to be adequate for paradigmatic examples, including Lewis’s own,
and even if it could be made to handle those examples it would still be need-
lessly complex and unnatural. The completely different representation that I
proposed in Section avoids these defects.

3.3 Reasonable credence

In Lewis’s presentation of his theory, the concept of a “reasonable initial cre-
dence function” plays a central role. Lewis says this is “a non-negative, nor-
malized, finitely additive measure defined on all propositions” that is

reasonable in the sense that if you started out with it as your ini-
tial credence function, and if you always learned from experience
by conditionalizing on your total evidence, then no matter what
course of experience you might undergo your beliefs would be rea-
sonable for one who had undergone that course of experience. I do
not say what distinguishes a reasonable from an unreasonable cre-
dence function to arrive at after a given course of experience. We
do make the distinction, even if we cannot analyze it; and therefore
I may appeal to it in saying what it means to require that C be a
reasonable initial credence function. (1986, 88)

However, there are different senses in which beliefs are said to be reasonable
and Lewis has not identified the one he means. A reasonable degree of belief
could be understood as one that a person would be well advised to adopt,
or that a person would be not be blameworthy for adopting, but on those
interpretations Lewis’s theory would give the wrong results, for the reasons
indicated in Section Alternatively, we might say that a reasonable degree
of belief is one that agrees with inductive probability given the person’s evi-
dence, but then reasonable degrees of belief would often lack precise numeric
values (Maher|2006) whereas Lewis requires a reasonable initial credence func-
tion to always have precise numeric values.

I think the best interpretation of Lewis here is that his “reasonable initial
credence function” is a probability function that is a precisification of inductive
probability given no evidence. This is compatible with the sort of criteria that
Lewis (1986, 110) states and also with his view (1986, 113) that there are
multiple reasonable initial credence functions.

Although Lewis allows for multiple reasonable initial credence functions,
his Principal Principle requires them to all agree when conditioned on an
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element of the history-theory partition. So, if a reasonable initial credence
function is a precisification of inductive probability, Lewis’s theory of chance
can be stated more simply and clearly using the concept of inductive prob-
ability, rather than the concept of a reasonable initial credence function, as
follows:

The chance of a proposition is its inductive probability conditioned on
the appropriate element of the history-theory partition.

This shows that the concept of credence does no essential work in Lewis’s
theory of chance; hence Lewis’s theory isn’t subjectivist and (Lewis||1980) is
mistitled.

What goes for chance also goes for counterfeit chance, and hence for phys-
ical probability in general. Thus Lewis’s theory of physical probability may
be stated as:

The physical probability of a proposition is its inductive probability con-
ditioned on the appropriate element of a suitable partition.

Again, the concept of credence is doing no essential work in Lewis’s theory
and clarity is served by eliminating it.

3.4 Partitions

We have seen that according to Lewis, physical probability is inductive prob-
ability conditioned on the appropriate element of a suitable partition. Also,
suitable partitions are natural partitions such that it is “to some extent fea-
sible to investigate (before the time in question) which cell of this partition
is the true cell” but “unfeasible” to investigate the truth of propositions that
divide the cells. Lewis says the history-theory partition is such a partition and
using it gives genuine chance. Coarser partitions, using different standards of
naturalness and feasibility, give what Lewis regards as counterfeit chance. 1
will now argue that Lewis is wrong about what counts as a suitable partition,
both for chance and counterfeit chance.

I begin with chance. Let t be the time at which the first tritium atom
formed and let A be the proposition that this atom still existed 24 hours
after t. The elements of the history-theory partition specify the chance at ¢
of A. But let us suppose, as might well be the case, that the only way to
investigate this chance is to observe many tritium atoms and determine the
proportion that decay in a 24 hour period. Then, even if sentient creatures
could exist prior to ¢ (which is not the case), it would not be feasible for them
to investigate the chance at ¢ of A, since there were no tritium atoms prior to
t. Therefore, the history-theory partition does not fit Lewis’s characterization
of a suitable partition.

Now consider a case of what Lewis calls counterfeit chance. Suppose that
at time ¢t I bend a coin slightly by hammering it and then immediately toss it;
let A be that the coin lands heads on this toss. If I assert that coin tossing is
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deterministic but the physical probability of this coin landing heads is not 0
or 1 then, according to Lewis, the physical probability I am talking about is
inductive probability conditioned on the true element of a suitable partition
that is coarser than the history-theory partition. Lewis has not indicated what
that partition might be but this part of his theory is adapted from Jeffrey,
who indicates (1983, 206) that the partition is one whose elements specify the
limiting relative frequency of heads in an infinite sequence of tosses of the coin.
However, there cannot be such an infinite sequence of tosses and, even if it
existed, it is not feasible to investigate its limiting relative frequency prior to t.
On the other hand, it is perfectly feasible to investigate many things that divide
the cells of this partition, such as what I had for breakfast. Lewis says different
partitions are associated with different standards of feasibility, but there is no
standard of feasibility according to which it is feasible prior to ¢ to investigate
the limiting relative frequency of heads in an infinite sequence of non-existent
future tosses, yet unfeasible to investigate what I had for breakfast. Hence
this partition is utterly unlike Lewis’s characterization of a suitable partition.

So, Lewis’s characterization of chance and counterfeit chance in terms of
partitions is wrong. This doesn’t undermine his theory of chance, which is
based on the Principal Principle rather than the characterization in terms of
partitions, but it does undermine his theory of counterfeit chance. I will now
diagnose the source of Lewis’s error.

Lewis’s original idea, expressed in his Principal Principle, was that in-
ductive probability conditioned on the relevant chance equals that chance.
That idea is basically correct, reflecting as it does the principle of direct in-
ference. Thus what makes the history-theory partition a suitable one is not
the characteristics that Lewis cited, concerning naturalness and feasibility of
investigation; it is rather that each element of the history-theory partition
specifies the value of the relevant chance. We could not expect the Principal
Principle to hold if the conditioning proposition specified only the history of
the world to date and not also the relevant chance values for a world with
that history. Yet, that is essentially what Lewis tries to do in his theory of
counterfeit chance. No wonder it doesn’t work.

So if counterfeit chance is to be inductive probability conditioned on the
appropriate element of a suitable partition, the elements of that partition
must specify the (true!) value of the counterfeit chance. But then it would
be circular to explain what counterfeit chance is by saying that it is induc-
tive probability conditioned on the appropriate element of a suitable partition.
Therefore, counterfeit chance cannot be explained in this way—just as chance
cannot be explained by saying it is inductive probability conditioned on the
appropriate element of the history-theory partition. Thus the account of coun-
terfeit chance, which Lewis adopted from Jeffrey, is misguided.

The right approach is to treat what Lewis regards as genuine and coun-
terfeit chance in a parallel fashion. My account of physical probability does
that. On my account, Lewis’s chances are physical probabilities in which the
experiment type specifies the whole history of the world up to the relevant
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moment, and his counterfeit chances are physical probabilities in which the
experiment type is less specific than that. Both are theoretical entities, the
same principle of direct inference applies to both, and we learn about both in
the same ways.

4 Conclusion

In Section [1| I identified what I mean by physical probability and gave an
account of some of its fundamental properties, namely:

e It can be represented as having an experiment type and an outcome type
as its arguments.

e This explains how non-extreme values are compatible with determinism.

e The existence of physical probabilities is governed by principles of spec-
ification and independence.

e Physical probability is related to inductive probability by a principle of
direct inference.

e Generalizations about admissible evidence follow from the preceding
principles.

This is not a complete theory but it is enough to avoid a variety of weaknesses
in the theories of Levi and Lewis, as I showed in Sections [2| and 3| T do not
know of any other account of physical probability that is successful in these
ways.

5 Proofs

5.1 Proof of Theorem [

Suppose it is possible to perform X in a way that ensures it is also a per-
formance of the more specific experiment type X;, for i = 1,2. If ppx(O)
exists then, by SP, both ppx, (O) and ppx,(O) exist and are equal to ppx (O);
hence ppx, (0) = ppx,(O). So, by transposition, if ppx, (O) # ppx,(O), then
ppx (O) does not exist.

5.2 Proof of Theorem [2]

Assume IN holds and ppx(0;) exists for i = 1,...,n. By letting O; be a

logically necessary outcome, for j # i, it follows from IN that ppxn (Ogl))

exists and equals ppx (O;); thus (b) holds. Substituting (b) in IN gives (a).
Now assume that ppx (O;) exists for ¢ = 1,...,n and that (a) and (b) hold.

Substituting (b) in (a) gives the consequent of IN, so IN holds.

18



5.3 Proof of Theorem [3|

Suppose (a) and (b) are true. Since SP is a conceptual truth about physical

probability, it is analytic, so R implies:
ppx'(0) = ppx(0) =r.
Therefore,

ip(Oa|Xa.R.E) = ip(Oa|X'a.R), by (a)
= r, by DL

Thus E is admissible with respect to (X, O, R, a).

5.4 Proof of Theorem /4|

Assume conditions (a) and (b) of the theorem hold. I will also assume that
m = n; the result for m < n follows by letting Opy41,...,0, be logically

necessary outcomes.
Since IN is analytic, it follows from (b) that R implies:

poxni (0 ..OP.0 D) = ppx(O1)...ppx(On) ppx (0)

= ri...TpT

(1)

Using obvious notation, ip(O1b; ... Opb,.0a|Xb; ... Xb,.Xa.R) can be rewrit-

ten as:

ip(OW . 0MOM D (by . b,a)| X" (by ... bpa).R).

Since R implies (1), it follows by DI that the above equals 77 ... r,7. Changing

the notation back then gives:
ip(O1by ... O0pb,.0alXby ... Xby. Xa.R) =1r1...1,7.
Replacing O in (2) with a logically necessary outcome, we obtain:
ip(O1by ... Opby| X0y ... Xby.Xa.R) =711 ...1.
Since r1...7, > 0 we have:

ip(OalXa.R.E) = ip(OalXa.R.Xb;y...Xb,.O1b1...0,by,)
ip(O1by ... Opbn.OalXby ... Xby.Xa.R)

ip(O1b1 ... Onby| Xby ... Xby. Xa.R)
= r, by and .

Thus E is admissible with respect to (X, 0, R, a).
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