
PROBABILITY CAPTURES THE LOGIC OF
SCIENTIFIC CONFIRMATION

1. Introduction

‘Confirmation’ is a word in ordinary language and, like many such
words, its meaning is vague and perhaps also ambiguous. So if we think
of a logic of confirmation as a specification of precise rules that govern
the word ‘confirmation’ in ordinary language, there can be no logic of
confirmation. There can, however, be a different kind of logic of con-
firmation. This can be developed using the philosophical methodology
known as explication (Carnap, 1950, ch. 1). In this methodology, we
are given an unclear concept of ordinary language (called the explican-
dum) and our task is to find a precise concept (called the explicatum)
that is similar to the explicandum and is theoretically fruitful and
simple. Since the choice of an explicatum involves several desiderata,
which different people may interpret and weight differently, there is not
one “right” explication; different people may choose different explicata
without either having made a mistake. Nevertheless, we can cite reasons
that motivate us to choose one explicatum over another.

In this paper I will define a predicate ‘C’ which is intended to be
an explicatum for confirmation. I will establish a variety of results
about ‘C’ dealing with verified consequences, reasoning by analogy,
universal generalizations, Nicod’s condition, the ravens paradox, and
projectability. We will find that these results correspond well with
intuitive judgments about confirmation, thus showing that our expli-
catum has the desired properties of being similar to its explicandum
and theoretically fruitful. In this way we will develop parts of a logic of
confirmation. The predicate ‘C’ will be defined in terms of probability
and in that sense we will conclude that probability captures the logic
of scientific confirmation.

2. Explication of justified degree of belief

I will begin by explicating the concept of the degree of belief in a
hypothesis H that is justified by evidence E. A little more fully, the
explicandum is the degree of belief in H that we would be justified
in having if E was our total evidence. We have some opinions about
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this but they are usually vague and different people sometimes have
different opinions.

In order to explicate this concept, let us begin by choosing a for-
malized language, like those studied in symbolic logic; we will call
this language L. We will use the letters ‘D’, ‘E’, and ‘H’, with or
without subscripts, to denote sentences of L. Let us also stipulate that
L contains the usual truth-functional connectives ‘∼’ for negation, ‘∨’
for disjunction, ‘.’ for conjunction, and ‘⊃’ for material implication.

Next we define a two-place function p which takes sentences of L as
arguments and has real numbers as its values. The definition of p will
specify, for each ordered pair of sentences H and E in L, a real number
that is denoted p(H|E). This number p(H|E) is intended to be our
explicatum for the degree of belief in H that is justified by evidence E;
we will therefore choose a definition of p using the desiderata for such
an explicatum, namely:

1. The values of p should agree with the judgments about justified
degrees of belief that we have. For example, if we judge that E
justifies a higher degree of belief in H1 than in H2 then we will
want to define p in such a way that p(H1|E) > p(H2|E). In this
way we ensure that the explicatum is similar to the explicandum.

2. The function p should be theoretically fruitful, which means that
its values satisfy many general principles.

3. The function p is as simple as possible.

I assume that this function p will satisfy the mathematical laws of
conditional probability. We will express these laws using the following
axioms. Here D, E, E′, H, and H ′ are any sentences of L and ‘=’
between sentences means that the sentences are logically equivalent.1

AXIOM 1. p(H|E) ≥ 0.

AXIOM 2. p(E|E) = 1.

AXIOM 3. p(H|E) + p(∼H|E) = 1, provided E is consistent.

1 The following formulation of the axioms of probability is like that of von Wright
(1957, p. 93) in several respects. In particular, I follow von Wright in taking p(H|E)
to be defined even when E is inconsistent. However, I differ from von Wright about
which axiom is not required to hold for inconsistent E; the result is that on my
axiomatization, but not von Wright’s, if E is inconsistent then p(H|E) = 1 for
all H (Proposition 2, Section 12.1). Since E entails H if E is inconsistent, the
value p(H|E) = 1 accords with the conception of probability as a generalization of
deductive logic.
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AXIOM 4. p(E.H|D) = p(E|D)p(H|E.D).

AXIOM 5. If H ′ = H and E′ = E then p(H ′|E′) = p(H|E).

3. Explication of confirmation

Now we will explicate the concept that is expressed by the word ‘con-
firms’ in statements like the following. (These are from news reports
on the web.)

‘New evidence confirms last year’s indication that one type of neu-
trino emerging from the Sun’s core does switch to another type en
route to the earth.’

‘New evidence confirms rapid global warming, say scientists.’

‘Tree-ring evidence confirms Alaskan Inuit account of climate dis-
aster.’

If we were to examine these examples in detail we would find that the
judgment that some evidence E confirms some hypothesis H makes use
of many other, previously known, pieces of evidence. Let us call this
other evidence the background evidence. Then our explicandum may
be expressed more precisely as the concept of E confirming H given
background evidence D.

In looking for an explicatum for this concept, we will be guided by
the idea that E confirms H given D iff (if and only if) the degree
of belief in H that is justified by E and D together is higher than
that justified by D alone. The corresponding statement in terms of our
explicatum p is p(H|E.D) > p(H|D). So let us adopt the following
definition.

DEFINITION 1. C(H,E,D) iff p(H|E.D) > p(H|D).

Thus C(H,E,D) will be our explicatum for the ordinary language
concept that E confirms H given background evidence D.

In ordinary language we sometimes say that some evidence E1 con-
firms a hypothesisH more than some other evidence E2 does. Plausibly,
such a statement is true iff the degree of belief in H that is justified
by E1 and the background evidence is higher than that justified by E2

and the background evidence. The corresponding statement in terms
of our explicatum p is p(H|E1.D) > p(H|E2.D). So let us adopt the
following definition:

DEFINITION 2. M(H,E1, E2, D) iff p(H|E1.D) > p(H|E2.D).
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Thus M(H,E1, E2, D) will be our explicatum for the ordinary language
concept that E1 confirms H more than E2 does, given D.

In the following sections we will use these explications to derive some
of the logic of scientific confirmation. Specifically, we will state and
prove theorems about our explicata C(H,E,D) and M(H,E1, E2, D).
These results will be seen to correspond closely to intuitive opinions
about the ordinary language concept of confirmation, thus verifying
that our explicata are similar to their explicanda.

4. Verified consequences

Scientists often assume that if E is a logical consequence of H then
verifying that E is true will confirmH. For example, Galileo’s argument
that falling bodies are uniformly accelerated consisted in proving that
the motion of uniformly accelerated bodies has certain properties and
then experimentally verifying that the motion of falling bodies has
those properties. Thus Galileo says that his hypothesis is “confirmed
mainly by the consideration that experimental results are seen to agree
with and exactly correspond to those properties which have been, one
after another, demonstrated by us” (1638, p. 160, cf. p.167). Similarly
Huygens, in the preface to his Treatise on Light (1690), says of that
book:

There will be seen in it demonstrations of those kinds which do
not produce as great a certitude as those of geometry, and which
even differ much therefrom, since, whereas the geometers prove
their propositions by fixed and incontestable principles, here the
principles are verified by the conclusions to be drawn from them;
the nature of these things not allowing of this being done otherwise.
It is always possible to attain thereby to a degree of probability
which very often is scarcely less than complete proof.

Let us now examine this assumption that hypotheses are confirmed
by verifying their consequences. To do so, we will first express the
assumption in terms of our explicata. Although the scientists’ state-
ments of the assumption do not mention background evidence, a careful
analysis of their deductions would show that when they say evidence is
logically implied by a hypothesis, often this is only true given some
background evidence. This suggests that the scientists’ assumption
might be stated in terms of our explicata thus: If E is a logical conse-
quence of H.D then C(H,E,D). The following theorem says that this
assumption is true with a couple of provisos.2

2 Proofs of all theorems except Theorem 4 are given in Section 12.
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THEOREM 1. If E is a logical consequence of H.D then C(H,E,D),
provided that 0 < p(H|D) < 1 and p(E|∼H.D) < 1.

If the provisos do not hold then—as can be proved—C(H,E,D) might
be false even though E is a logical consequence of H.D. The provisos
make sense intuitively; if H is already certainly true or false, or if the
evidence is certain to obtain even if H is false, then we do not expect
E to confirm H. Nevertheless, the need for these provisos is apt to be
overlooked when there is no precise statement of the assumption or any
attempt to prove it.

Another assumption that is made intuitively by scientists is that
a hypothesis is confirmed more strongly the more consequences are
verified. This can be expressed more formally by saying that if E1 and
E2 are different logical consequences of H.D then E1.E2 confirms H
more than E1 does, given D. The corresponding statement in terms of
our explicata is that if E1 and E2 are different logical consequences of
H.D then M(H,E1.E2, E1, D). The following theorem shows that this
is correct, with a few provisos like those of Theorem 1.

THEOREM 2. If E2 is a logical consequence of H.D then M(H,E1.E2, E1, D),
provided that 0 < p(H|E1.D) < 1 and p(E2|∼H.E1.D) < 1.

This theorem holds whether or not E1 is a logical consequence of H.
Comparing E1 and E2 separately, it is also intuitive that E1 confirms

H better than E2 does if E1 is less probable given ∼H than E2 is. This
thought may be expressed in terms of our explicata by saying that if
E1 and E2 are both logical consequences of H.D and p(E1|∼H.D) <
p(E2|∼H.D) then M(H,E1, E2, D). The next theorem shows that this
is also correct, with a natural proviso.

THEOREM 3. If E1 and E2 are logical consequences of H.D and
p(E1|∼H.D) < p(E2|∼H.D) then M(H,E1, E2, D), provided that 0 <
p(H|D) < 1.

5. Probabilities for two properties

Often data about some sample is held to confirm predictions about
other individuals. In order to deal with these kinds of cases we need
to specify the language L and the function p more completely than we
have done so far. This section will give those further specifications and
subsequent sections will apply them to questions about confirmation
from samples.
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Let us stipulate that our language L contains two primitive pred-
icates ‘F ’ and ‘G’ and infinitely many individual constants ‘a1’, ‘a2’,
. . . .3 A predicate followed by an individual constant means that the
individual denoted by the individual constant has the property denoted
by the predicate. For example, ‘Fa3’ means that a3 has the property
F .

Let us define four predicates ‘Q1’ to ‘Q4’ in terms of ‘F ’ and ‘G’ by
the following conditions. Here, and in the remainder of this paper, ‘a’
stands for any individual constant.

Q1a = Fa.Ga; Q2a = Fa.∼Ga; Q3a = ∼Fa.Ga; Q4a = ∼Fa.∼Ga.

A sample is a finite set of individuals. A sample description is a sentence
that says, for each individual in some sample, which Qi applies to that
individual. For example Q3a1 is a sample description for the sample
consisting solely of a1 while Q1a2.Q4a3 is a sample description for the
sample consisting of a2 and a3. We will count any logically true sentence
as a sample description for the “sample” containing no individuals; this
is artificial but convenient.

Let us also stipulate that L contains a sentence I which means that
the properties F andG are statistically independent. Roughly speaking,
this means that in a very large sample of individuals, the proportion of
individuals that have both F and G is close to the proportion that have
F multiplied by the proportion that have G. A more precise definition
is given in Maher (2000, p. 65).

So far we have not specified the values of the function p beyond
saying that they satisfy the axioms of probability. There are many
questions about confirmation that cannot be answered unless we specify
the values of p further. Maher (2000) states eight further axioms for
a language like L. The following theorem characterizes the probability
functions that satisfy these axioms. In this theorem, and in the remain-
der of this paper, ‘F̄ ’ is the predicate that applies to a iff ‘∼Fa’ is true,
and similarly for ‘Ḡ’. (This theorem is a combination of Theorems 3,
5, and 6 of Maher, 2000.)

THEOREM 4. There exist constants λ, γ1, γ2, γ3, and γ4, with λ > 0
and 0 < γi < 1, such that if E is a sample description for a sample
that does not include a, n is the sample size, and ni is the number of
individuals to which E ascribes Qi, then

p(Qia|E.∼I) =
ni + λγi

n+ λ
.

3 The restriction to two primitive predicates is partly for simplicity but also
because we do not currently have a satisfactory specification of p for the case where
there are more than two predicates (Maher, 2001).
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If γF = γ1 + γ2, γF̄ = γ3 + γ4, γG = γ1 + γ3, and γḠ = γ2 + γ4 then
γ1 = γFγG, γ2 = γFγḠ, γ3 = γF̄γG, and γ4 = γF̄γḠ. Also, if nφ is the
number of individuals to which E ascribes property φ then

p(Q1a|E.I) =
nF + λγF

n+ λ

nG + λγG

n+ λ

p(Q2a|E.I) =
nF + λγF

n+ λ

nḠ + λγḠ

n+ λ

p(Q3a|E.I) =
nF̄ + λγF̄

n+ λ

nG + λγG

n+ λ

p(Q4a|E.I) =
nF̄ + λγF̄

n+ λ

nḠ + λγḠ

n+ λ
.

I will now comment on the meaning of this theorem. In what follows,
for any sentence H of L I use ‘p(H)’ as an abbreviation for ‘p(H|T )’,
where T is any logically true sentence of L.

The γi represent the initial probability of an individual having Qi,
γF is the initial probability of an individual having F , and so on. This
is stated formally by the following theorem.

THEOREM 5. For i = 1, . . . , 4, γi = p(Qia). Also γF = p(Fa), γF̄ =
p(∼Fa), γG = p(Ga), and γḠ = p(∼Ga).

As the sample size n gets larger and larger, the probability of an un-
observed individual having a property moves from these initial values
towards the relative frequency of the property in the observed sample
(Maher, 2000, Theorem 10). The meaning of the factor λ is that it
controls the rate at which these probabilities converge to the observed
relative frequencies; the higher λ the slower the convergence.

The formulas given ∼I and I are similar; the difference is that when
we are given∼I (F andG are dependent) we use the observed frequency
of the relevant Qi and when we are given I (F and G are independent)
we use the observed frequencies of F (or F̄ ) and G (or Ḡ) separately.

To get numerical values of p from Theorem 4 we need to assign
values to γF , γG, λ, and p(I). (The other values are fixed by these. For
example, γ1 = γFγG.) I will now comment on how these choices can be
made.

The choice of γF and γG will depend on what the predicates ‘F ’
and ‘G’ mean and may require careful deliberation. For example, if ‘F ’
means ‘raven’ then, since this is a very specific property and there are
vast numbers of alternative properties that seem equally likely to be
exemplified a priori, γF should be very small, surely less than 1/1000.
A reasoned choice of a precise value would require careful consideration
of what exactly is meant by ‘raven’ and what the alternatives are.
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Turning now to the choice of λ, Carnap (1980, pp. 111–119) con-
sidered the rate of learning from experience that different values of
λ induce and came to the conclusion that λ should be about 1 or 2.
Another consideration is this: So far as we know a priori, the statistical
probability (roughly, long run relative frequency) of an individual hav-
ing F might have any value from 0 to 1. In the case where γF = 1/2 it
is natural to regard all values of this statistical probability as equally
probable a priori (more precisely, to have a uniform probability distri-
bution over the possible values), and it can be shown that this happens
if and only if λ = 2. For this reason, I favor choosing λ = 2.

Finally, we need to choose a value of p(I), the a priori probability
that F and G are statistically independent. The alternatives I and
∼I seem to me equally plausible a priori and for that reason I favor
choosing p(I) = 1/2.

I have made these remarks about the choice of parameter values
to indicate how it may be done but, except in examples, I will not
assume any particular values of the parameters. What will be assumed
is merely that λ > 0, 0 < γi < 1, and 0 < p(I) < 1.

6. Reasoning by analogy

If individual b is known to have property F then the evidence that
another individual a has both F and G would normally be taken to
confirm that b also has G. This is a simple example of reasoning by
analogy. The following theorem shows that our explication of confirma-
tion agrees with this. (From here on, ‘a’ and ‘b’ stand for any distinct
individual constants.)

THEOREM 6. C(Gb, Fa.Ga, Fb).

Let us now consider the case in which the evidence is that a has G
but not F . It might at first seem that this evidence would be irrelevant
to whether b has G, since a and b are not known to be alike in any
way. However, it is possible for all we know that the property F is
statistically irrelevant to whether something has G, in which case the
fact that a has G should confirm that b has G, regardless of whether a
has F . Thus I think educated intuition should agree that the evidence
does confirm that b has G in this case too, though the confirmation will
be weaker than in the preceding case. The following theorems show that
our explication of confirmation agrees with both these judgments.

THEOREM 7. C(Gb,∼Fa.Ga, Fb).

THEOREM 8. M(Gb, Fa.Ga,∼Fa.Ga, Fb).
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There are many other aspects of reasoning by analogy that could be
investigated using our explicata but we will move on.

7. Universal generalizations

We are often interested in the confirmation of scientific laws that assert
universal generalizations. In order to express such generalizations in
L, we will stipulate that L contains an individual variable ‘x’ and the
universal quantifier ‘(x)’, which means ‘for all x’. Then for any predicate
‘φ’ in L, the generalization that all individuals have φ can be expressed
in L by the sentence ‘(x)φx’. Here the variable ‘x’ ranges over the
infinite set of individuals a1, a2, . . . . We now have:

THEOREM 9. If φ is any of the predicates

F, F̄ ,G, Ḡ,Q1, Q2, Q3, Q4

and if p(E) > 0 then p[(x)φx|E] = 0.

I do not know whether this result extends to other universal general-
izations, such as (x)(Fx ⊃ Gx) or (x)∼Qix.

A corollary of Theorem 9 is:

THEOREM 10. If φ is as in Theorem 9 and T is a logical truth then,
for all positive integers m, ∼C[(x)φx, φa1 . . . φam, T ].

On the other hand, we ordinarily suppose that if many individuals
are found to have φ, with no exceptions, then that confirms that all
individuals have φ. Thus our explicatum C appears to differ from its
explicandum, the ordinary concept of confirmation, on this point. How-
ever, the discrepancy depends on the fact that the variables in L range
over an infinite set of individuals. The following theorem shows that the
discrepancy does not arise when we are concerned with generalizations
about a finite set of individuals.

THEOREM 11. If φ is as in Theorem 9 and T is a logical truth then,
for all positive integers m and n, C(φa1 . . . φan, φa1 . . . φam, T ).

We could modify our explicata to allow universal generalizations about
infinitely many individuals to be confirmed by sample descriptions.
However, that would add considerable complexity and the empirical
generalizations that I will discuss in what follows can naturally be
taken to be concerned with finite populations of individuals. There-
fore, instead of modifying the explicata I will in what follows restrict
attention to universal generalizations about finite populations.
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8. Nicod’s condition

Jean Nicod (1923) maintained that a law of the form ‘All F are G’ is
confirmed by the evidence that some individual is both F and G. Let
us call this Nicod’s condition.

For the reason just indicated, I will take the generalization ‘All F
are G’ to be about individuals a1, . . . , an, for some finite n > 1. I will
denote this generalization by A, so we have

A = (Fa1 ⊃ Ga1) . . . (Fan ⊃ Gan).

Nicod’s condition, translated into our explicata, is then the claim that
C(A,Fa.Ga,D), where a is any one of a1, . . . , an and D remains to be
specified.

Nicod did not specify the background evidence D for which he
thought that his condition held. We can easily see that Nicod’s con-
dition does not hold for any background evidence D. For example, we
have:

THEOREM 12. ∼C(A,Fa.Ga, Fa.Ga ⊃ ∼A).

On the other hand,

THEOREM 13. C(A,Fa.Ga, Fa).

Thus Nicod’s condition may or may not hold, depending on what D is.
So let us now consider the case in which D is a logically true sentence,
representing the situation in which there is no background evidence.
Some authors, such as Hempel (1945) and Maher (1999), have main-
tained that Nicod’s condition holds in this case. I will now examine
whether this is correct according to our explicata.

In order to have a simple case to deal with, let n = 2, so

A = (Fa1 ⊃ Ga1).(Fa2 ⊃ Ga2).

In Section 5 I said that I favored choosing λ = 2 and p(I) = 1/2, while
the values of γF and γG should depend on what ‘F ’ and ‘G’ mean and
may be very small. Suppose then that we have

γF = 0.001; γG = 0.1; λ = 2; p(I) = 1/2.

In this case calculation shows that, with a = a1 or a2,

p(A|Fa.Ga) = .8995 < .9985 = p(A).

So in this case ∼C(A,Fa.Ga, T ), which shows that according to our
explications Nicod’s condition does not always hold, even when there
is no background evidence.
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Table I. Probabilities of Qib in the counterexample to Nicod’s condition

G Ḡ
F .0001 .0009
F̄ .0999 .8991

p(Qib)

G Ḡ
F .2335 .1005
F̄ .1665 .4995

p(Qib|Q1a)

G Ḡ
F .0001 .0006
F̄ .0667 .9327

p(Qib|Q4a)

Since Nicod’s condition has seemed very intuitive to many, this re-
sult might seem to reflect badly on our explicata. However, the failure
of Nicod’s condition in this example is intuitively intelligible, as the
following example shows.

According to standard logic, ‘All unicorns are white’ is true if there
are no unicorns. Given what we know, it is almost certain that there
are no unicorns and hence ‘All unicorns are white’ is almost certainly
true. But now imagine that we discover a white unicorn; this astound-
ing discovery would make it no longer so incredible that a non-white
unicorn exists and hence would disconfirm ‘All unicorns are white.’

The above numerical counterexample to Nicod’s condition is similar
to the unicorn example; initially it is improbable that F s exist, since
γF = 0.001, and the discovery of an F that is G then raises the prob-
ability that there is also an F that is not G, thus disconfirming that
all F are G. Table I shows p(Qib) and p(Qib|Q1a) for i = 1, 2, 3, and
4. This shows how the evidence Q1a raises the probability that b is Q2

and hence a counterexample to the generalization that all F are G.
Initially that probability is 0.0009 but given Q1a it becomes 0.1005.4

9. The ravens paradox

The following have all been regarded as plausible:

(i) Nicod’s condition holds when there is no background evidence.

(ii) Confirmation relations are unchanged by substitution of logically
equivalent sentences.

4 Good (1968) argued that Nicod’s condition could fail when there is no back-
ground evidence for the sort of reason given here. Maher (1999, sec. 4.6) showed that
Good’s stated premises did not entail his conclusion. The present discussion shows
that Good’s reasoning goes through if we use a probability function that allows
for analogy effects between individuals that are known to differ in some way. The
probability functions used by Maher (1999) do not allow for such analogy effects.
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(iii) In the absence of background evidence, the evidence that some
individual is a non-black non-raven does not confirm that all ravens
are black.

However, (i)–(iii) are inconsistent. For (i) implies that a non-black non-
raven confirms “all non-black things are non-ravens” and the latter is
logically equivalent to “all ravens are black.” Thus there has seemed to
be a paradox here (Hempel, 1945).

We have already seen that (i) is false, which suffices to resolve the
paradox. But let us now use our explicanda to assess (ii) and (iii).

In terms of our explicanda, what (ii) says is that if H = H ′, E = E′,
and D = D′, then C(H,E,D) iff C(H ′, E′, D′). It follows from Axiom 5
and Definition 1 that this is true. So we accept (ii).

Now let F mean ‘raven’ and G mean ‘black’. Then in terms of our
explicata, what (iii) asserts is ∼C(A,∼Fa.∼Ga, T ). But using the same
parameter values as in the numerical example of the preceding section,
we find:

p(A|∼Fa.∼Ga) = .9994 > .9985 = p(A).

So in this case C(A,∼Fa.∼Ga, T ). This is contrary to the intuitions
of many but when we understand the situation better it ceases to be
unintuitive, as I will now show.

The box on the right in Table I shows p(Qib|Q4a), which on the
current interpretation is the probability of Qib given that a is a non-
black non-raven. We see that

p(Q2b|Q4a) = 0.0006 < 0.0009 = p(Q2b)

and so Q4a reduces the probability that b is a counterexample to “All
ravens are black.” This should not be surprising. In addition, Q4a tells
us that a is not a counterexample to “All ravens are black,” which
a priori it might have been. So for these two reasons together, it ought
not to be surprising that a non-black non-raven can confirm that all
ravens are black.

Thus our response to the ravens paradox is to reject both (i) and
(iii). Neither proposition holds generally according to our explicata and
the reasons why they do not hold make intuitively good sense.

10. Projectability

Goodman (1979, p. 74) defined the predicate ‘grue’ by saying that “it
applies to all things examined before t just in case they are green but to
other things just in case they are blue.” Goodman claimed, and it has
generally been accepted, that ‘grue’ is not “projectable” although most
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discussions, including Goodman’s own, do not say precisely what they
mean by ‘projectable’. Goodman’s discussion is also entangled with his
mistaken acceptance of Nicod’s condition. Our explications allow us to
clarify this confused situation.

One precise concept of projectability is the following:

DEFINITION 3. Predicate φ is absolutely projectable iff C(φb, φa, T ).

The basic predicates in L are projectable in this sense, that is:

THEOREM 14. The predicates F , F̄ , G, and Ḡ are absolutely pro-
jectable.

Now let us define a predicate G′ as follows:

DEFINITION 4. G′a = (Fa.Ga) ∨ (∼Fa.∼Ga).

If ‘F ’ means ‘observed before t’ and ‘G’ means ‘green’ then ‘G′’ has a
meaning similar to ‘grue’.

THEOREM 15. G′ is absolutely projectable.

This is contrary to what many philosophers seem to believe but careful
consideration will show that our explications here again correspond
well to their explicanda. Theorem 15 corresponds to this statement of
ordinary language: The justified degree of belief that an individual is
grue, given no evidence except that some other individual is grue, is
higher than if there was no evidence at all. If we keep in mind that we
do not know of either individual whether it has been observed before t
then this statement should be intuitively acceptable.

Philosophers regularly claim that if ‘green’ and ‘grue’ were both
projectable then the same evidence would confirm both that an unob-
served individual is green and that it is not green. It is a demonstrable
fact about our explicata that the same evidence cannot confirm both
a sentence and its negation, so this claim is definitely false when expli-
cated as above. When philosophers say things like this they are perhaps
assuming that we know of each individual whether or not it has been
observed before t; however, the concept of absolute projectability says
nothing about what is true with this background evidence. So let us
now consider a different concept of projectability.

DEFINITION 5. Predicate φ is projectable across predicate ψ iff
C(φb, φa.ψa,∼ψb).

THEOREM 16. G is, and G′ is not, projectable across F .
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We saw that if ‘F ’ means ‘observed before t’ and ‘G’ means ‘green’ then
‘G′’ has a meaning similar to ‘grue’. With those meanings, Theorem 16
fits the usual views of what is and is not projectable.

However, we could specify that ‘G’ means ‘observed before t and
green or not observed before t and not green.’ Then, with ‘F ’ still
meaning ‘observed before t’, ‘G′’ would mean ‘green’; in that case
Theorem 16 would be just the opposite of the usual views of what is
projectable. This shows that the acceptability of our explicata depends
on the meanings assigned to the primitive predicates ‘F ’ and ‘G’ in
the language L. We get satisfactory results if the primitive predicates
express ordinary concepts like ‘green’ and we may not get satisfactory
results if some primitive predicates express gerrymandered concepts
like ‘grue’.

11. Conclusion

The predicate ‘C’ is a good explicatum for confirmation because it is
similar to its explicandum and theoretically fruitful. This predicate was
defined in terms of probability. In that sense, probability captures the
logic of scientific confirmation.

12. Proofs

12.1. Propositions

This section states and proves some propositions that will later be used
in the proofs of the theorems.

PROPOSITION 1. If H is a logical consequence of E then p(H|E) =
1.

Proof. Suppose H is a logical consequence of E. Then

1 = p(E|E), by Axiom 2
= p(H.E|E), by Axiom 5
= p(H|E) p(E|H.E), by Axiom 4
= p(H|E) p(E|E), by Axiom 5
= p(H|E), by Axiom 2.

PROPOSITION 2. If E is inconsistent then p(H|E) = 1.
Proof. If E is inconsistent then H is a logical consequence of E and

so, by Proposition 1, p(H|E) = 1.
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PROPOSITION 3. If E is consistent and E.H is inconsistent then
p(H|E) = 0.

Proof. Suppose E is consistent and E.H is inconsistent. Then ∼H
is a logical consequence of E and so

p(H|E) = 1− p(∼H|E), by Axiom 3
= 1− 1, by Prop. 1
= 0.

PROPOSITION 4. p(E|D) = p(E.H|D) + p(E.∼H|D), provided D is
consistent.

Proof. Suppose D is consistent. If E.D is consistent then:

p(E|D) = p(E|D)[p(H|E.D) + p(∼H|E.D)], by Axiom 3
= p(E.H|D) + p(E.∼H|D), by Axiom 4.

If E.D is inconsistent then Proposition 3 implies that p(E|D), p(E.H|D),
and p(E.∼H|D) are all zero and so again p(E|D) = p(E.H|D) +
p(E.∼H|D).

PROPOSITION 5 (Law of total probability). If D is consistent then

p(E|D) = p(E|H.D)p(H|D) + p(E|∼H.D)p(∼H|D).
Proof. Suppose D is consistent. Then

p(E|D) = p(E.H|D) + p(E.∼H|D), by Prop. 4
= p(E|H.D)p(H|D) + p(E|∼H.D)p(∼H|D), by Axiom 4.

PROPOSITION 6. If D is consistent and p(E|D) > 0 then

p(H|E.D) =
p(E|H.D)p(H|D)

p(E|D)
.

Proof. Suppose D is consistent and p(E|D) > 0. Then

p(H|E.D) =
p(E.H|D)
p(E|D)

, by Axiom 4

=
p(E|H.D)p(H|D)

p(E|D)
, by Axiom 4.

PROPOSITION 7 (Bayes’s theorem). If D is consistent and p(E|D) >
0 then

p(H|E.D) =
p(E|H.D)p(H|D)

p(E|H.D)p(H|D) + p(E|∼H.D)p(∼H|D)
.
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Proof. Immediate from Propositions 5 and 6.

PROPOSITION 8. If E is a logical consequence of H.D then p(E|D) ≥
p(H|D).

Proof. If D is consistent then

p(E|D) = p(E|H.D)p(H|D) + p(E|∼H.D)p(∼H|D), by Prop. 5
≥ p(E|H.D)p(H|D), by Axiom 1
= p(H|D), by Prop. 1.

If D is inconsistent then by Proposition 2 p(E|D) = p(H|D) = 1, so
again p(E|D) ≥ p(H|D).

12.2. Proof of Theorem 1

Suppose that E is a logical consequence of H.D, 0 < p(H|D) < 1, and
p(E|∼H.D) < 1. By Proposition 2, D is consistent. So by Axiom 3,
p(∼H|D) > 0. Since p(E|∼H.D) < 1 it then follows that

p(E|∼H.D)p(∼H|D) < p(∼H|D). (1)

Since p(H|D) > 0, it follows from Proposition 8 that p(E|D) > 0. So

p(H|E.D) =
p(E|H.D)p(H|D)

p(E|H.D)p(H|D) + p(E|∼H.D)p(∼H|D)
, by Prop. 7

=
p(H|D)

p(H|D) + p(E|∼H.D)p(∼H|D)
, by Prop. 1

>
p(H|D)

p(H|D) + p(∼H|D)
, by (1) and p(H|D) > 0

= p(H|D), by Axiom 3.

So, by Definition 1, C(H,E,D).

12.3. Proof of Theorem 2

Suppose that E2 is a logical consequence of H.D. It follows that E2 is a
logical consequence of H.E1.D. Suppose further that 0 < p(H|E1.D) <
1 and p(E2|∼H.E1.D) < 1. It then follows from Theorem 1 that C(H,E2, E1.D).
By Definition 1, this means that p(H|E1.E2.D) > p(H|E1.D). By
Definition 2, it follows that M(H,E1.E2, E1, D).
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12.4. Proof of Theorem 3

Suppose that E1 andE2 are logical consequences ofH.D, p(E1|∼H.D) <
p(E2|∼H.D), and 0 < p(H|D) < 1. By Proposition 2, D is consistent.
So by Axiom 3, p(∼H|D) > 0. Since p(E1|∼H.D) < p(E2|∼H.D), it
then follows that

p(E1|∼H.D)p(∼H|D) < p(E2|∼H.D)p(∼H|D). (2)

Since p(H|D) > 0, it follows from Proposition 8 that p(E1|D) > 0 and
p(E2|D) > 0. So

p(H|E1.D) =
p(E1|H.D)p(H|D)

p(E1|H.D)p(H|D) + p(E1|∼H.D)p(∼H|D)
, by Prop. 7

=
p(H|D)

p(H|D) + p(E1|∼H.D)p(∼H|D)
, by Prop. 1

>
p(H|D)

p(H|D) + p(E2|∼H.D)p(∼H|D)
, by (2) and p(H|D) > 0

=
p(E2|H.D)p(H|D)

p(E2|H.D)p(H|D) + p(E2|∼H.D)p(∼H|D)
, by Prop. 1

= p(H|E2.D), by Prop. 7.

So by Definition 2, M(H,E1, E2, D).

12.5. Proof of Theorem 5

p(Q1a) = p(Q1a|I)p(I) + p(Q1a|∼I)p(∼I), by Prop. 5
= γ1p(I) + γ1p(∼I), by Theorem 4
= γ1, by Axiom 3.

Similarly, γ2 = p(Q2a), γ3 = p(Q3a), and γ4 = p(Q4a).

p(Fa) = p(Q1a) + p(Q2a), by Prop. 4
= γ1 + γ2, as just shown
= γF (γG + γḠ), by Theorem 4
= γF (γ1 + γ2 + γ3 + γ4), by definition of γG and γḠ

= γF [p(Q1a) + p(Q2a) + p(Q3a) + p(Q4a)], as just shown
= γF [p(Fa) + p(∼Fa)], by Prop. 4
= γF , by Axiom 3.

Similarly, γF̄ = p(∼Fa), γG = p(Ga), and γḠ = p(∼Ga).
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12.6. Propositions used in the proof of Theorems 6–8

This section states and proves some propositions that will be used in
proving the theorems in Section 6.

PROPOSITION 9. p(I|Qia) = p(I) and p(∼I|Qia) = p(∼I) for i =
1, . . . , 4.

Proof.

p(I) =
γ1p(I)
γ1

, trivially

=
p(Q1a|I)p(I)

γ1
, by Theorem 4

=
p(Q1a|I)p(I)
p(Q1a)

, by Theorem 5

= p(I|Q1a), by Prop. 6.

Similarly, p(I|Qia) = p(I) for i = 2, 3, and 4. It follows from Axiom 3
that p(∼I|Qia) = p(∼I).

PROPOSITION 10. γF + γF̄ = γG + γḠ = 1.
Proof. By Theorem 5, γF = p(Fa) and γF̄ = p(∼Fa). By Axiom 3,

the sum of these is 1. Similarly, γG + γḠ = 1.

PROPOSITION 11. If φ is F , F̄ , G, or Ḡ then 0 < γφ < 1.
Proof. By Theorem 4, γF = γ1 + γ2 > 0. Also

γF = 1− γF̄ , by Prop. 10
< 1, since γF̄ > 0.

The argument for F̄ , G, and Ḡ is similar.

PROPOSITION 12. If φ is F , F̄ , G, or Ḡ then γφ < (1+λγφ)/(1+λ).
Proof. By Proposition 11, γφ < 1. Adding λγφ to both sides and

then dividing both sides by 1 + λ gives the proposition.

PROPOSITION 13. γG < (1 + λγ1)/(1 + λγF ).
Proof. Substitute G for φ and λγF for λ in Proposition 12.

PROPOSITION 14. p(Ga|Fa) = γG.
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Proof.

γFγG = γ1, by Theorem 4
= p(Q1a), by Theorem 5
= p(Fa)p(Ga|Fa), by Axiom 4
= γF p(Ga|Fa), by Theorem 5.

Dividing both sides by γF gives the proposition.

PROPOSITION 15.

p(Gb|Fa.Ga.Fb) =
1 + λγG

1 + λ
p(I) +

1 + λγ1

1 + λγF
p(∼I).

Proof.

p(Q1b|Q1a) = p(Q1b|Q1a.I)p(I|Q1a) + p(Q1b|Q1a.∼I)p(∼I|Q1a),
by Prop. 5

= p(Q1b|Q1a.I)p(I) + p(Q1b|Q1a.∼I)p(∼I), by Prop. 9

=
1 + λγF

1 + λ

1 + λγG

1 + λ
p(I) +

1 + λγ1

1 + λ
p(∼I), by Thm. 4. (3)

Similarly,

p(Q2b|Q1a) =
1 + λγF

1 + λ

λγḠ

1 + λ
p(I) +

λγ2

1 + λ
p(∼I). (4)

p(Fb|Q1a) = p(Q1b|Q1a) + p(Q2b|Q1a), by Prop. 4

=
1 + λγF

1 + λ

1 + λγG + λγḠ

1 + λ
p(I) +

1 + λγ1 + λγ2

1 + λ
p(∼I),

by (3) and (4)

=
1 + λγF

1 + λ
p(I) +

1 + λγF

1 + λ
p(∼I), by Prop. 10 and def. of γF

=
1 + λγF

1 + λ
, by Axiom 3. (5)

By Axioms 4 and 5,

p(Q1b|Q1a) = p(Fb|Q1a)p(Gb|Fa.Ga.Fb).

Substituting (3) and (5) in this gives:

1 + λγF

1 + λ

1 + λγG

1 + λ
p(I) +

1 + λγ1

1 + λ
p(∼I) =

1 + λγF

1 + λ
p(Gb|Fa.Ga.Fb).

Dividing both sides by (1 + λγF )/(1 + λ) gives the proposition.
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PROPOSITION 16.

p(Gb|∼Fa.Ga.Fb) =
1 + λγG

1 + λ
p(I) + γGp(∼I).

Proof. Similar to Proposition 15.

12.7. Proof of Theorem 6

p(Gb|Fa.Ga.Fb) =
1 + λγG

1 + λ
p(I) +

1 + λγ1

1 + λγF
p(∼I), by Prop. 15

> γGp(I) + γGp(∼I), by Props. 12 and 13
= γG, by Axiom 3
= p(Gb|Fb), by Prop. 14.

So by Definition 1, C(Gb, Fa.Ga, Fb).

12.8. Proof of Theorem 7

p(Gb|∼Fa.Ga.Fb) =
1 + λγG

1 + λ
p(I) + γGp(∼I), by Prop. 16

> γGp(I) + γGp(∼I), by Prop. 12 and p(I) > 0
= γG, by Axiom 3
= p(Gb|Fb), by Prop. 14.

So by Definition 1, C(Gb,∼Fa.Ga, Fb).

12.9. Proof of Theorem 8

p(Gb|Fa.Ga.Fb) =
1 + λγG

1 + λ
p(I) +

1 + λγ1

1 + λγF
p(∼I), by Prop. 15

>
1 + λγG

1 + λ
p(I) + γGp(∼I), by Prop. 13 and p(I) < 1

= p(Gb|∼Fa.Ga.Fb), by Prop. 16.

So by Definition 2, M(Gb, Fa.Ga,∼Fa.Ga, Fb).

12.10. Propositions used in the proof of Theorem 9

PROPOSITION 17. If E1, . . . , En are pairwise inconsistent and D is
consistent then

p(E1 ∨ · · · ∨ En|D) = p(E1|D) + · · ·+ p(En|D).
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Proof. If n = 1 then the proposition is trivially true. Now suppose
that the proposition holds for n = k and let E1, . . . , Ek+1 be pairwise
inconsistent propositions. Then

p(E1 ∨ · · · ∨ Ek+1|D) = p((E1 ∨ · · · ∨ Ek+1).∼Ek+1|D) +
p((E1 ∨ · · · ∨ Ek+1).Ek+1|D), by Prop. 4

= p(E1 ∨ · · · ∨ Ek|D) + p(Ek+1|D), by Axiom 5
= p(E1|D) + · · ·+ p(Ek+1|D), by assumption.

Thus the proposition holds for n = k+1. So by mathematical induction
the proposition holds for all positive integers n.

PROPOSITION 18. If λ > 0 and 0 < γ < 1 then

∞∏
i=0

i+ λγ

i+ λ
= 0.

Proof. Let γ̄ = 1− γ. Then for all i ≥ 0,

i+ λγ

i+ λ
= 1− λγ̄

i+ λ
. (6)

Also 0 < λγ̄/(i+ λ) < 1 for all i ≥ 0. Now∫ ∞

x=0

λγ̄

x+ λ
dx = λγ̄ [ln(x+ λ)]∞x=0 = ∞.

So by the integral test for convergence of infinite series (Flatto, 1976,
Theorem 5.10),

∞∑
i=0

λγ̄

i+ λ
= ∞.

Hence, by (6) and Theorem 5.32(2) of Flatto (1976),

∞∏
i=0

i+ λγ

i+ λ
= 0.

PROPOSITION 19. If φ is any of the predicates F , F̄ , G, or Ḡ then,
for all positive integers n,

p(φa1 . . . φan) =
n−1∏
i=0

i+ λγφ

i+ λ
.
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Proof. Let E be any sample description for a1, . . . , an that ascribes
either Q1 or Q2 to each of a1, . . . , an. Let ni be the number of individ-
uals to which E ascribes Qi. Then

p(Fan+1|Fa1 . . . Fan.I)

=
∑
E

p(Fan+1|E.I)p(E|Fa1 . . . Fan.I), by Prop. 5

=
∑
E

[p(Q1an+1|E.I) + p(Q2an+1|E.I)] p(E|Fa1 . . . Fan.I),

by Prop. 4

=
∑
E

n+ λγF

n+ λ

[
nG + λγG

n+ λ
+
nḠ + λγḠ

n+ λ

]
p(E|Fa1 . . . Fan.I),

by Theorem 4

=
∑
E

n+ λγF

n+ λ
p(E|Fa1 . . . Fan.I), by Prop. 10 and nG + nḠ = n

=
n+ λγF

n+ λ

∑
E

p(E|Fa1 . . . Fan.I), since n is the same for all E

=
n+ λγF

n+ λ
p

(∨
E

E|Fa1 . . . Fan.I

)
, by Prop. 17

=
n+ λγF

n+ λ
, by Prop. 1. (7)

p(Fan+1|Fa1 . . . Fan.∼I)
=
∑
E

p(Fan+1|E.∼I)p(E|Fa1 . . . Fan.∼I), by Prop. 5

=
∑
E

[p(Q1an+1|E.∼I) + p(Q2an+1|E.∼I)] p(E|Fa1 . . . Fan.∼I),

by Prop. 4

=
∑
E

[
n1 + λγ1

n+ λ
+
n2 + λγ2

n+ λ

]
p(E|Fa1 . . . Fan.∼I), by Theorem 4

=
∑
E

n+ λγF

n+ λ
p(E|Fa1 . . . Fan.∼I), since n1 + n2 = n

=
n+ λγF

n+ λ
, using Prop. 17 as above. (8)

p(Fan+1|Fa1 . . . Fan)
= p(Fan+1|Fa1 . . . Fan.I)p(I|Fa1 . . . Fan) +

p(Fan+1|Fa1 . . . Fan.∼I)p(∼I|Fa1 . . . Fan), by Prop. 5
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=
n+ λγF

n+ λ
[p(I|Fa1 . . . Fan) + p(∼I|Fa1 . . . Fan)], by (7) and (8)

=
n+ λγF

n+ λ
, by Axiom 3. (9)

p(Fa1 . . . Fan) = p(Fa1)
n−1∏
i=1

p(Fai+1|Fa1 . . . Fai), by Axiom 4

=
n−1∏
i=0

i+ λγF

i+ λ
, by Theorem 5 and (9).

So by mathematical induction, the proposition holds for φ = F . Parallel
reasoning shows that it also holds for φ = F̄ , φ = G, and φ = Ḡ.

12.11. Proof of Theorem 9

Case (i): φ is F , F̄ , G, or Ḡ. Let ε > 0. By Theorem 4, λ > 0 and
0 < γφ < 1, so by Proposition 18 there exists an integer N such that

N−1∏
i=0

i+ λγφ

i+ λ
< ε.

Now

p[(x)φx] ≤ p(φa1 . . . φaN ), by Prop. 8

=
N−1∏
i=0

i+ λγφ

i+ λ
, by Prop. 19

< ε, by choice of N .

Hence p[(x)φx] = 0. Also

p[(x)φx|E] =
p[(x)φx.E]
p(E)

, by Axiom 4 and p(E) > 0

≤ p[(x)φx]
p(E)

, by Prop. 8

= 0, since p[(x)φx] = 0.

Case (ii): φ is Q1, Q2, Q3, or Q4.

p[(x)Q1x|E] ≤ p[(x)Fx|E], by Prop. 8
= 0, from case (i).
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Similar reasoning shows that the result also holds if φ is Q2, Q3, or Q4.

12.12. Proof of Theorem 10

Using Proposition 19 and Axiom 5, p(φa1 . . . φam.T ) > 0. Also p(T ) >
0. So by Theorem 9,

p[(x)φx|φa1 . . . φam.T ] = p[(x)φx|T ] = 0.

So by Definition 1, ∼C[(x)φx, φa1 . . . φam, T ].

12.13. Proof of Theorem 11

If m ≥ n then

p(φa1 . . . φan|φa1 . . . φam) = 1, by Prop. 1
> p(φa1 . . . φan), by Prop. 19.

By Proposition 19, 0 < p(φa1 . . . φam) < 1. So if m < n then

p(φa1 . . . φan|φa1 . . . φam) =
p(φa1 . . . φan)
p(φa1 . . . φam)

, by Axiom 4

> p(φa1 . . . φan).

Thus p(φa1 . . . φan|φa1 . . . φam) > p(φa1 . . . φan) for all m and n. So by
Definition 1, C(φa1 . . . φan, φa1 . . . φam, T ).

12.14. Proof of Theorem 12

Let D = Fa.Ga ⊃ ∼A. Then Fa.Ga.D is consistent and Fa.Ga.D.A
is inconsistent, so by Proposition 3, p(A,Fa.Ga.D) = 0. By Axiom 1,
p(A,D) ≥ 0 and so, by Definition 1, ∼C(A,Fa.Ga,D).

12.15. Proof of Theorem 13

p(A|Fa.Ga.Fa) = p(A|Fa.Ga), by Axiom 5
> p(A|Fa.Ga)p(Ga|Fa),

since p(Ga|Fa) < 1 by Props. 11 and 14
= p(A|Fa.Ga)p(Ga|Fa) + p(A|Fa.∼Ga)p(∼Ga),

since p(A|Fa.∼Ga) = 0 by Prop. 3
= p(A|Fa), by Prop. 5.

So by Definition 1, C(A,Fa.Ga, Fa).
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12.16. Proof of Theorem 14

Let φ be F , F̄ , G, or Ḡ. Then

p(φb|φa) =
p(φa.φb)
p(φa)

, by Axiom 4

=
1 + λγφ

1 + λ
, by Prop. 19

> γφ, by Prop. 12
= p(φb), by Theorem 5.

So by Definition 1, C(φb, φa, T ). Hence by Definition 3, φ is absolutely
projectable.

12.17. Proof of Theorem 15

p(G′a.G′b|I) = p(Q1a.Q1b|I) + p(Q1a.Q4b|I) + p(Q4a.Q1b|I) +
p(Q4a.Q4b|I), by Prop. 4

= γ1
1 + λγF

1 + λ

1 + λγG

1 + λ
+ 2γ1γ4

λ2

(1 + λ)2
+

γ4
1 + λγF̄

1 + λ

1 + λγḠ

1 + λ
, by Axiom 4 and Theorem 4

= γ1

(
γF +

γF̄

1 + λ

)(
γG +

γḠ

1 + λ

)
+ 2γ1γ4

λ2

(1 + λ)2
+

γ4

(
γF̄ +

γF

1 + λ

)(
γḠ +

γG

1 + λ

)
= (γ1 + γ4)2 +

1
1 + λ

(
γ1γ2 + γ1γ3 + γ2γ4 + γ3γ4 − 4γ1γ4

λ

1 + λ

)
> (γ1 + γ4)2 +

1
1 + λ

(γ1γ2 + γ1γ3 + γ2γ4 + γ3γ4 − 4γ1γ4)

= (γ1 + γ4)2 +
1

1 + λ
[γGγḠ(γF − γF̄ )2 + γFγF̄ (γG − γḠ)2]

≥ (γ1 + γ4)2. (10)

p(G′a.G′b|∼I) = p(Q1a.Q1b|∼I) + p(Q1a.Q4b|∼I) + p(Q4a.Q1b|∼I) +
p(Q4a.Q4b|∼I), by Prop. 4

= γ1
1 + λγ1

1 + λ
+ 2γ1γ4

λ

1 + λ
+ γ4

1 + λγ4

1 + λ
,

by Axiom 4 and Theorem 4

= γ1

(
γ1 +

1− γ1

1 + λ

)
+ 2γ1γ4

(
1− 1

1 + λ

)
+
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γ4

(
γ4 +

1− γ4

1 + λ

)
= (γ1 + γ4)2 +

(γ1 + γ4)(γ2 + γ3)
1 + λ

> (γ1 + γ4)2, by Theorem 4. (11)

p(G′b|G′a) =
p(G′a.G′b)
p(G′a)

, by Axiom 4

=
p(G′a.G′b|I)p(I) + p(G′a.G′b|∼I)p(∼I)

p(G′a)
, by Prop. 5

>
(γ1 + γ4)2p(I) + (γ1 + γ4)2p(∼I)

p(G′a)
, by (10) and (11)

=
(γ1 + γ4)2

p(G′a)
, by Axiom 3

= p(G′b), since p(G′a) = p(G′b) = γ1 + γ4.

So by Definition 1, C(G′b,G′a, T ). Hence by Definition 3, G′ is abso-
lutely projectable.

12.18. Proof of Theorem 16

Interchanging F and ∼F in Theorem 7 gives C(Gb, Fa.Ga,∼Fb). The
proof of this is the same, mutatis mutandis, as the proof of Theorem 7.
So by Definition 5, G is projectable across F .

p(G′b|Fa.G′a.∼Fb) =
p(G′b.∼Fb|Fa.G′a)
p(∼Fb|Fa.G′a)

, by Axiom 4

=
p(∼Gb.∼Fb|Fa.Ga)
p(∼Fb|Fa.Ga)

, by Def. 4 and Axiom 5

= p(∼Gb|Fa.Ga.∼Fb), by Axiom 4
= 1− p(Gb|Fa.Ga.∼Fb), by Axiom 3
< 1− p(Gb|∼Fb), since G is projectable across F
= p(∼Gb|∼Fb), by Axiom 3

=
p(∼Gb.∼Fb)
p(∼Fb)

, by Axiom 4

=
p(G′b.∼Fb)
p(∼Fb)

, by Def. 4 and Axiom 5

= p(G′b|∼Fb), by Axiom 4.

So by Definition 1, ∼C(G′b, Fa.G′a,∼Fb). Hence by Definition 5, G′

is not projectable across F .
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