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Introduction

The topic

In Lecture 7 we saw:

A family of properties is a set of properties that belong to one
modality (e.g., color), are mutually exclusive, and jointly
exhaustive.
Carnap’s explication of ip for an L whose primitive predicates
denote the elements of one family of properties.

It is important to be able to deal with properties from different
modalities; e.g., “black raven” involves two modalities.

Today I’ll discuss the simplest case of this sort, where L
contains just two primitive predicates but they denote
properties from different modalities.



Notation and terminology

Predicates and partitions

The two primitive predicates of L are denoted F 1
1 and F 2

1 .
Superscript indicates modality, subscript indicates property.

Example: F 1
1 = raven, F 2

1 = black.

F i
2 designates the complement of F i

1.

Example: F 1
2 = non-raven, F 2

2 = non-black.

Flm is the conjunction of F 1
l and F 2

m.

Example: F11 = black raven, F12 = non-black raven.

A partition of predicates is a set of predicates that are
mutually exclusive and jointly exhaustive. Notation:

F1 = {F 1
1 ,F 1

2 }
F2 = {F 2

1 ,F 2
2 }

F12 = {F11,F12,F21,F22}.
The partitions F1 and F2 each designate a family of
properties (in Carnap’s sense). F12 doesn’t because it
combines two modalities.



Sample descriptions

A sample description with respect to partition F is a conjunction
of atomic sentences, each of which ascribes a predicate in F to a
different individual.

Examples

Sample description with respect to

F11a1.F12a2 F12

F 1
1 a1.F

1
1 a2 F1

F 2
1 a1.F

2
2 a2 F2

Notation:

S : A sample description with respect to F12.

S1: The corresponding sample description with respect to F1.

S2: The corresponding sample description with respect to F2.



The problem

We want conditions that will fix the value of p(A|B), for all
sentences A and B in L, in such a way that p is a good
explicatum for ip(A|B).

It suffices to fix the value of p(Flma|S), for all sample
descriptions S not containing a, where l ,m = 1, 2.

We’ll now consider three methods for doing this.



MI: Method of independence

The method

F1 and F2 are independent in p and Carnap’s λγ theorem applies
to each of them separately. So:

p(Flma|S) = p(F 1
l a|S1) p(F 2

ma|S2)

=
n1
l + λγ1

l

n + λ

n2
m + λγ2

m

n + λ
.

Here:

n = size of the sample described by S ;

ni
l = number of individuals that S says have F i

l ;

γi
l = the γ value for F i

l .



Objection

Suppose S says n/2 individuals have F11 and n/2 have F22. Then,
using MI,

p(F12a|S) =
n/2 + λγ1

1

n + λ

n/2 + λγ2
2

n + λ

→ 1

4
as n →∞.

But ip(F12a|S) → 0 in this example.



MC: Method of combination

The method

Carnap’s λγ theorem applies to F12. Thus:

p(Flma|S) =
nlm + λγlm

n + λ
,

where:

nlm = number of individuals that S says have Flm;

γlm = the γ value for Flm.

MC avoids the objection to MI

If S says n/2 individuals have F11 and n/2 have F22, MC gives:

p(F12a|S) =
λγ12

n + λ
→ 0 as n →∞.



Objection

Using MC,

p(F12b|F11a.S) =
n12 + λγ12

n + 1 + λ
<

n12 + λγ12

n + λ
= p(F12b|S).

But, under some circumstances,

ip(F12b|F11a.S) > ip(F12b|S).

Example

Let F 1
1 = unicorn, F 2

1 = white. Given what we know, it is very
improbable that any unicorns exist, but if a white unicorn were
discovered, that would raise the probability that non-white unicorns
also exist, and hence that an unobserved individual is a non-white
unicorn.



MM: Mixed method

Definition

F1 and F2 are statistically independent if they are uncorrelated in
the population, i.e., the proportion of individuals that have F11 is
just the proportion that have F 1

1 times the proportion that have F 2
1 .

Example

Let the individuals be days.

If F 1
1 = Sunday, F 2

1 = rainy, then F1 and F2 are statistically
independent.

If F 1
1 = day in April, F 2

1 = rainy, then F1 and F2 are
statistically dependent (I suppose).

Notation: “I” means F1 and F2 are statistically independent.



The method MM

MI is right when I is given and MC is right when ∼I is given. So:

p(Flma|S .I ) =
n1
l + λγ1

l

n + λ

n2
m + λγ2

m

n + λ

p(Flma|S .∼I ) =
nlm + λγlm

n + λ
.

Also, γlm = γ1
l γ2

m and 0 < p(I ) < 1.

By the law of total probability:

p(Flma|S) = p(Flma|S .I ) p(I |S) + p(Flma|S .∼I ) p(∼I |S).



MM avoids the objection to MI

Suppose S says n/2 individuals have F11 and n/2 have F22. With
MM,

p(F12a|S) = p(F12a|S .I ) p(I |S) + p(F12a|S .∼I )p(∼I |S).

But S becomes conclusive evidence for ∼I as n →∞. Thus, as
n →∞, p(I |S) → 0 and

p(F12a|S) → p(F12a|S .∼I ) =
λγ12

n + λ
→ 0.



MM avoids the objection to MC

With MM, if γ1
1 is sufficiently small then

p(F12b|F11a) > p(F12b).

Example

Let γ1
1 = 0.001, γ2

1 = 0.1, λ = 2, p(I ) = 1/2. Then

p(F12b|F11a) = 0.1005 > 0.0009 = p(F12b).

The left side is more than 100 times larger than the right!

(The appendix shows how these numbers are obtained.)



Questions

1 Describe method MI for explicating ip for two properties. Is it
a good method? Justify your answer.

2 Describe method MC for explicating ip for two properties. Is it
a good method? Justify your answer.

3 Describe method MM for explicating ip for two properties.

4 Is MM open to the objection against MI that was raised in
class? Justify your answer.

5 Is MM open to the objection against MC that was raised in
class? Justify your answer, without proofs.



AA: Carnap’s axiom of analogy

Definition

Let φ1 and φ2 be predicates in F12.
d(φ1, φ2) = the number of indices on which φ1 and φ2 differ.

Examples

d(F11,F12) = 1; d(F11,F22) = 2.

Carnap’s axiom of analogy (Carnap 1975, p. 320)

If d(φ1, φ2) = 1 and d(φ1, φ3) = 2 then

p(φ1b|φ2a.S) > p(φ1b|φ3a.S).



MM violates AA (Maher 2000 p. 72)

Example: If n11 = n22 = 4, n12 = n21 = 0, γi
l = 1/2, λ = 2, and

p(I ) = 1/2, then using MM:

p(F11b|F12a.S) = 0.394 < 0.407 = p(F11b|F22a.S).

Is MM defective? Or is AA not an appropriate requirement?



Analysis of the example (Maher 2000 p. 72)

p(F11b|F12a.S) = 0.394 < 0.407 = p(F11b|F22a.S)

p(F11b|F12a.S .I ) = 0.248 > 0.207 = p(F11b|F22a.S .I )

p(F11b|F12a.S .∼I ) = 0.409 = p(F11b|F22a.S .∼I )

p(I |F12a.S) = 0.096 > 0.012 = p(I |F22a.S)

So MM violates AA here because, given S :

1 I is more probable given F12a than given F22a.

2 Raising the probability of I lowers the probability of F11b; the
pattern exhibited in S starts to look more like a coincidence.



Conclusion

AA is based on the intuition that if φ1 is more similar to φ2

than to φ3 then ip(φ1b|φ2a.S) > ip(φ1b|φ3a.S).

That intuition doesn’t take account of the fact that learning
φ2a or φ3a may also give us information about whether this
similarity is statistically relevant.

Therefore, we should reject AA.

Using MM has here given us a more sophisticated understanding of
ip than we could have obtained by reasoning about that vague
concept directly. That is the characteristic of a good explicatum!
(Cf. lecture 2.)



AC: The axiom of convergence

This is another axiom endorsed by Carnap (1963, p. 976); basically, it
says that probabilities should converge to observed relative
frequencies in the long run. Here we’ll focus on its application to
F12, in which case it may be stated as follows.

The axiom

Let S1, S2, . . . , be an infinite sequence of sample descriptions with
respect to F12, where each Sn is for a sample of size n and Sn+1

entails Sn. Let nlm denote the number of individuals that have Flm

according to Sn. Then, for a not involved in any of the Sn,

lim
n→∞

∣∣∣p(Flma|Sn)−
nlm

n

∣∣∣ = 0.



MI violates AC

The objection made earlier against MI was essentially that it
violates AC. Restated in present terminology: Let Sn say that all n
individuals are F11 or F22, with (as near as possible) half being
each. Then, using MI:

lim
n→∞

∣∣∣p(F12a|Sn)−
n12

n

∣∣∣ = lim
n→∞

∣∣∣∣n1
1 + λγ1

1

n + λ

n2
2 + λγ2

2

n + λ
− n12

n

∣∣∣∣
=

∣∣∣∣12 1

2
− 0

∣∣∣∣ =
1

4
6= 0.

MC satisfies AC

lim
n→∞

∣∣∣p(F12a|Sn)−
n12

n

∣∣∣ = lim
n→∞

∣∣∣∣nlm + λγlm

n + λ
− nlm

n

∣∣∣∣ = 0.



MM satisfies AC

MM is a mixture of MI and MC.

MC satisfies AC, as we’ve just seen.

MI does not in general satisfy AC. When it doesn’t,∣∣∣∣n1
l

n

n2
m

n
− nlm

n

∣∣∣∣ 6→ 0 as n →∞.

In that case, p(I |Sn) → 0 as n →∞. But p(I |Sn) is the
weight on the MI component. Therefore, when the MI
component doesn’t satisfy AC, the weight on it becomes zero.

Therefore, MM satisfies AC.

A different proof is given in Maher (2000).

Conclusion: So far, MM has survived all challenges!



Questions

6 State Carnap’s axiom of analogy. Does MM satisfy it? Should
an explicatum for ip satisfy it? Justify your answer to the
latter question.

7 For each of the following, say whether it satisfies the axiom of
convergence and prove that your answer is correct.

(a) MI.
(b) MC.
(c) MM.



Appendix

Here I show how to obtain the numbers in the example that
showed MM avoids the objection to MC. Let’s start with:

Prior probability

p(F12b) = p(F12b|I ) p(I ) + p(F12b|∼I )p(∼I )

= γ1
1γ2

2p(I ) + γ12p(∼I ), by MM

= γ1
1γ2

2p(I ) + γ1
1γ2

2p(∼I ), by MM

= γ1
1γ2

2

= γ1
1(1− γ2

1)

= (0.001)(1− 0.1)

= 0.0009.



Before calculating the posterior probability we need:

Probability of I

p(I |Flma) =
p(Flma|I )p(I )

p(Flma|I )p(I ) + p(Flma|∼I )p(∼I )
, by Bayes’ theorem

=
γ1

l γ2
m p(I )

γ1
l γ2

m p(I ) + γlm p(∼I )
, by MM

=
p(I )

p(I ) + p(∼I )
, by MM

= p(I ).



Finally, we calculate:

Posterior probability

p(F12b|F11a)

= p(F12b|F11a.I ) p(I |F11a) + p(F12b|F11a.∼I ) p(∼I |F11a)

= p(F12b|F11a.I ) p(I ) + p(F12b|F11a.∼I ) p(∼I ),

by the previous result

=
1 + λγ1

1

1 + λ

λγ2
2

1 + λ
p(I ) +

λγ12

1 + λ
p(∼I ), by MM

=
1 + 2(.001)

1 + 2

2(.9)

1 + 2

1

2
+

2(.0009)

1 + 2

1

2
= 0.1005.
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